| 
 
 
 
 | Educational resources of the Internet - Mathematics. Образовательные ресурсы Интернета - Математика. | ||
М.: МГИУ, 2007. — 254 с.
Учебное пособие предназначено для студентов высших 
учебных заведений направления «Прикладная математика и информатика» (010500) и 
специальности «Математическое обеспечение и администрирование информационных 
систем» (010503) и соответствует программе дисциплины «Дифференциальные 
уравнения»
 
Формат: pdf / zip
Размер: 1,6 Мб
  ОГЛАВЛЕНИЕ
1. Введение 3
  2. Обыкновенные дифференциальные уравнения. Общие понятия 5
2.1. Эволюционные процессы 5
  2.2. Определения, примеры 7
  2.3. Геометрическая интерпретация. Обобщение задачи 9
  2.4. Метод изоклин 14
3. Простейшие дифференциальные уравнения 17
3.1. Уравнения вида -^ = f(x) 17
  3.2. Уравнения вида ^ = f(y) 20
  3.3. Уравнения с разделяющимися переменными 22
  3.4. Однородные уравнения 24
  3.5. Линейные уравнения 26
  3.6. Уравнение Бернулли 28
  3.7. Уравнение в полных дифференциалах. Интегрирующий множитель 28
4. Общая теория. Численные методы 39
4.1. Ломаные Эйлера 40
  4.2. Метод последовательных приближений (метод Пикара) 44
  4.3. Сеточные методы решения задачи Коши 52
  4.4. Метод ломаных (Метод Эйлера) 54
  4.5. Метод Рунге-Кутта 59
5. Уравнения, не разрешенные относительно производной 64
5.1. Основная теорема о решении уравнения, не разрешенного 
  относительно производной 64
  5.2. Решение дифференциальных уравнений в параметрической форме 66
  5.3. Особые точки и особые линии 68
  5.4. Особое решение 69
  5.5. Огибающая 75
  5.6. О поведении интегральных кривых в целом и предельных циклах 79
6. Дифференциальные уравнения высших порядков 82
6.1. Основные понятия дифференциальных уравнений высших порядков 82
  6.2. Дифференциальные уравнения, допускающие понижение порядка 85
  6.3. Линейные дифференциальные уравнения n-го порядка 88
  6.4. Общая теория линейных однородных уравнений 90
7. Неоднородные линейные уравнения 102
7.1. Общие свойства 102
  7.2. Метод вариации произвольных постоянных 104
8. Сопряженное уравнение 108 
8.1. Множитель дифференциального выражения 108
9. Линейные дифференциальные уравнения с постоянными коэффициентами 
  111
9.1. Однородные линейные уравнения с постоянными коэффициентами 111
  9.2. Переход к вещественным функциям 119
  9.3. Линейные неоднородные уравнения с постоянными коэффициентами 121
  9.4. Приложение линейных дифференциальных уравнений второго порядка к 
  изучению механических и электрических колебаний 126
10. Линейные уравнения второго порядка с переменными коэффициентами 
  135
10.1. Общие свойства решения линейных уравнений второго порядка 135
  10.2. Решение краевой задачи для дифференциального уравнения второго 
  порядка методом прогонки 143
11. Системы обыкновенных дифференциальных уравнений 149
11.1. Нормальная форма системы дифференциальных уравнений 149
  11.2. Векторная запись системы 153
  11.3. Системы линейных дифференциальных уравнений 155
  11.4. Свойства линейных однородных систем. 156
  11.5. Линейные неоднородные системы 163
  11.6. Формула Коши для неоднородной системы 165
12. Линейные системы с постоянными коэффициентами 167
12.1. Преобразование системы уравнений 167
  12.2. Интегрирование однородной системы в жордановой форме 169
  12.3. Метод исключения 178
  12.4. Применение к однородному линейному дифференциальному уравнению 
  n-го порядка 187
13. Однородные системы с периодическими коэффициентами 189
  14. Зависимость решения дифференциального уравнения от параметров и 
  начальных данных 195
14.1. Теорема о зависимости решения от параметра 196
  14.2. Дифференцируемость решения по параметру 201
15. Теория устойчивости (Устойчивость по Ляпунову) 201
15.1. Асимптотическая устойчивость 202
  15.2. Сведение к рассмотрению нулевого решения 203
  15.3. Устойчивость линейных однородных систем 204
  15.4. Лемма Ляпунова 207
  15.5. Нелинейные автономные системы 211
16. Особые точки на плоскости 219
16.1. Классификация особых точек на плоскости 220
  16.2. Связь типа особой точки с устойчивостью стационарного решения х = 
  0, у = 0. 233
17. Приближенные методы решения дифференциальных уравнений 237
17.1. Интегрирование дифференциальных уравнений с помощью рядов 237
  17.2. Численные методы решения задачи Коши для систем дифференциальных 
  уравнений 243
О том, как читать книги в форматах pdf, djvu - см. раздел "Программы; архиваторы; форматы pdf, djvu и др."
.
| 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 | ||
| 
 | ||