Educational resources of the Internet - Mathematics.

 Образовательные ресурсы Интернета - Математика.

        Главная страница (Содержание)

   


Правообладателям

800 лучших олимпиадных задач по математике для подготовки к ЕГЭ. 9-11 классы. Балаян Э.Н.

Р. на/Д: 2013.— 264 с. 

В предлагаемом пособии рассмотрены различные методы и приемы решения олимпиадных задач разного уровня трудности для учащихся 9-11 классов. Задачи, представленные в книге, посвящены таким, уже ставшим классическими, темам, как делимость и остатки, инварианты, диофантовы уравнения, принцип Дирихле, геометрические задачи и т.п. Ко всем задачам даны ответы и указания, а к наиболее трудным - решения, причем некоторые задачи решены различными способами. Большинство задач авторские, отмечены значком (А). Пособие предназначено прежде всего старшеклассникам общеобразовательных школ, лицеев, гимназий, учителям математики для подготовки детей к олимпиадам различного уровня, а также к ЕГЭ, студентам - будущим учителям, работникам центров дополнительного образования, и всем любителям математики.

Примечание: книга не полностью, стр. 1-71, 86-269.

 

 

Формат: pdf          

Размер:  6,7 Мб

Смотреть, скачать:   drive.google  

 

 

 

 

Содержание
Предисловие 3
Раздел I. Условия задач 5
9 класс 5
Делимость чисел. Разложение на множители. Действия с радикалами. Многочлены. Решение уравнений различными способами. Геометрические задачи. Задачи на доказательство. Тригонометрические уравнения. Преобразование тригонометрических выражений. Доказательства тождеств. Иррациональные уравнения и методы их решения. Комплексные уравнения и неравенства. Линейные и нелинейные уравнения с параметрами. Прогрессии
10 класс 36
Тригонометрические уравнения и неравенства. Задачи на доказательство. Решение различных типов нелинейных систем уравнений. Геометрические задачи, задачи с параметром. Преобразования иррациональных выражений. Неопределенные уравнения различных степеней. Многочлены. Иррациональные уравнения, решаемые с использованием различных идей. Неравенства и системы. Нестандартные уравнения. Комплексные упражнения (графики, уравнения и неравенства)
11 класс 62
Алгебраические уравнения высших степеней и способы их решения. Решение различных типов неравенств. Применение производной при решении уравнений и неравенств. Исследование функций. Наибольшее и наименьшее значения функций. Монотонность. Задачи на доказательство. Нелинейные системы уравнений высших степеней. Иррациональные системы
уравнений. Тригонометрические уравнения и уравнения, содержащие обратные тригонометрические функции. Системы показательных уравнений с двумя и тремя неизвестными. Применение векторов к решению уравнений и систем уравнений. Комплексные уравнения, неравенства и графики. Уравнения и неравенства с параметром. Геометрические задачи
Раздел II. Ответы. Указания. Решения 87
9 класс 87
10 класс 161
11 класс 237
Литература 318


Предисловие
Роль олимпиад с каждым годом становится все более значимой. И не случайно многие вузы стали проводить свои олимпиады для будущих абитуриентов, преследуя цель — привлечь школьников в данный вуз. Победителей, занявших призовые места, освобождали от сдачи экзаменов и зачисляли в вуз.
В связи с этим, назрела необходимость в доступной форме ознакомить широкие массы школьников с характером и типом задач, предлагаемых на олимпиадах.
Обычно традиционные олимпиады проходят в пять туров: школьный, районный (городской), областной (республиканский, краевой), зональный (окружной) и всероссийский.
В книге представлены задачи разного уровня трудности, причем сделано это сознательно с тем, чтобы каждый участник мог что-то решить, ибо если задачи слишком трудны, то дети теряют интерес не только к олимпиаде, но и к изучению математики.
Как правило, олимпиадная задача — это задача повышенной трудности, нестандартная как по формулировке, так и по методам решения. Среди предложенных задач встречаются как нетривиальные, для решения которых требуются необычные идеи и специальные методы, так и более стандартные, которые могут быть решены оригинальным способом. К числу таких методов можно отнести делимость и остатки, признаки
делимости чисел, решение уравнений в целых числах, метод инвариантов, принцип Дирихле, задачи на проценты, логического характера и др.
Эти задачи способствуют резкой активизации мыслительной деятельности, умственной активности, дают возможность самостоятельно составлять подобные, а возможно, и более оригинальные задачи, что в итоге приводит со временем к творческим открытиям в различных областях математики.
Автор старался привести наиболее рациональные и изящные решения> доступные школьникам 9-11 классов. Разумеется, читатель может привести и другие, возможно, более изящные решения, за что автор будет весьма признателен.
Книга состоит из двух разделов. В первом приводятся условия задач для 9-11 классов.
Задачи, отмеченные значком (А), авторские, составленные на протяжении многих лет педагогической деятельности.

 


О том, как читать книги в форматах pdf, djvu - см. раздел "Программы; архиваторы; форматы pdf, djvu и др."


 

 

.

 

 

Общеобразовательные

Астрономия

Биология

География

Естествознание

Иностр. языки.

Информатика

Искусствоведение

История

Культурология

Литература

Математика:

Начальная школа

Средняя школа

Решение задач

ГИА (экзамен)

ЕГЭ (экзамен)

ГДЗ по математике

Высшая школа

Менеджмент

ОБЖ

Обществознание

Психология

Религиоведение

Русский язык

Физика

Философия 

Химия

Экология

Экономика

Юриспруденция

Школа - и др.

Студентам - и др.

Экзамены школа

Абитуриентам

Библиотеки 

Справочники

Рефераты

Прочее

Помоги нашему сайту alleng!
Задонатить можно здесь:





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Copyright  © 2006-2025    alleng.me, alleng.ru, alleng.org,  Russia,   info@alleng.me

         

Контакты