Educational resources of the Internet - Mathematics.

 Образовательные ресурсы Интернета - Математика.

        Главная страница (Содержание)

   


Правообладателям

Задачи и упражнения по математическому анализу. В 2 ч. Виноградова И.А., Олехник С.Н., Садовничий В.А.

 

 

Задачи и упражнения по математическому анализу/ И. А. Виноградова, С. Н. Олехник, В. А. Садовничий. Под общ. ред. В. А. Садовничего. — М.: Изд-во Моск. ун-та, 1988. - 416с.

Учебное пособие соответствует программе 1-го курса для студентов-математиков и отражает опыт преподавания математического анализа на механико-математическом факультете МГУ. Большая часть задач отлична от содержащихся в известном задачнике Б. П. Демидовича.

 

Формат: pdf          ( 1988, 416с.)  

Размер:  10  Мб

Смотреть, скачать:   drive.google  

Формат: djvu / zip  

Размер: 4 Мб

Скачать / Download файл     Скачать

 

 

 

Математический анализ в задачах и упражнениях: Учеб. пособие. Виноградова И. А., Олехник С. Н., Садовничий В. А. — М.: Изд-во Моск. ун-та, 1991. — 352 с.

Пособие составлено на материале занятий по курсу математического анализа на II курсе механико-математического факультета МГУ и отражает опыт преподавания кафедры математического анализа. Перед задачами приводятся развернутые методические указания. В них даны все используемые в данном параграфе определения, формулировки основных теорем, вывод некоторых соотношений, приведены подробные решения характерных задач, обращено внимание на часто встречающиеся ошибки. Содержание задач и упражнений согласовано с теоретическим курсом математического анализа. Большая часть задач и упражнений отлична от задач, содержащихся в известном задачнике Б. П. Демидовича.

Для студентов математических специальностей университетов и педвузов и студентов технических вузов с углубленным изучением математического анализа.
 

Формат: pdf          ( 1991, 352с.)  

Размер:  6  Мб

Смотреть, скачать:   drive.google  

Формат: djvu / zip  

Размер: 3,1 Мб

Скачать / Download файл     Скачать

 

 

 

Задачи и упражнения по математическому анализу. Пособие для университетов, пед. вузов. В 2 ч. И. А. Виноградова, С. Н. Олехник, В. А. Садовничий. Под ред. В. А. Садовничего. 3-е изд., испр. - М.: Дрофа, 2001.

Учебное пособие соответствует программе курса математического анализа для студентов механико-математических и математических факультетов университетов, педагогических и технических вузов. Задачник отражает современные тенденции развития математики. Большинство задач в пособии сопровождается решениями, поэтому оно может быть полезно при самостоятельном изучении предмета.

В первой книге содержатся разделы: графики, пределы, дифференциальное и интегральное исчисление.

Во второй книге содержатся разделы: ряды и бесконечные произведения; несобственные интегралы и интегралы с параметрами; ряды Фурье; преобразование Фурье.

Для студентов университетов, педагогических вузов, вузов с углубленным изучением математики.

 

Ч. 1.  Дифференциальное и интегральное исчисление.

Формат: pdf          ( 2001, 725с.)  

Размер:  133  Мб

Смотреть, скачать:   drive.google  

 

Ч. 2.  Ряды, несобственные интегралы, ряды Фурье; преобразование Фурье.

Формат: pdf          ( 2001, 712с.)  

Размер:  116  Мб

Смотреть, скачать:   drive.google  

 

 

 

 

 

 

 

 

Задачи и упражнения по математическому анализу. 1988. - 416с.

Предисловие . . 3
Часть I. Графики, пределы, дифференциальное исчисление функции одной переменной    4
Глава I. Построение эскизов графиков функций 4
§ 1. Элементарные преобразования графиков 4-
§ 2. Графики рациональных функций 14
§ 3. Графики алгебраических функций 16
§ 4. Обратные тригонометрические функции и их графики ... 20
§ 5. Кривые, заданные параметрически 25
§ 6. Полярная система координат и уравнения кривых в этой системе 29
§ 7. Функции, заданные неявно 31
Задачи . . . 34
Глава II. Вычисление пределов 48
§ 1. Предел функции 48
§ 2. Предел последовательности 67
§ 3. Вычисление пределов с помощью формулы Тейлора .... 70
Задачи . . . 77
Ответы 87
Глава III. Дифференциальное исчисление функций одного действительного переменного . . 89
§ 1. Вычисление производных 89
§ 2. Дифференциал функции и инвариантность его формы ... 101
§ 3. Приложения дифференциального исчисления 10З
Касательные и нормали к кривым 10З
Возрастание и убывание функции 110
Формула Тейлора, правило Лопиталя 113
Исследование функций и построение кривых 117
Задачи . . . 122
Ответы . . . 133
Глава IV. Теоретические задачи . 144
§ 1. Общие свойства числовых множеств на прямой 144
§ 2. Последовательности и их свойства 148
§ 3. Функции. Общие свойства . 152
§ 4. Предел и непрерывность функций 154
§ 5. Дифференцируемость функций . 159
Ответы, решения, указания 162
Часть II. Неопределенный и определенный интегралы. Дифференциальное исчисление функций многих переменных 174
Глава I. Неопределенный интеграл 174
§ 1. Первообразная и простейшие способы ее нахождения . . . 174
Задачи 177
§ 2. Интегрирование по частям 180
Задачи . . . 181
§ 3. Замена переменного 182
§ 4. Простейшие интегралы, содержащие квадратный трехчлен . . 190
Задачи . . . 193
§ 5. Интегрирование рациональных дробей 194
Задачи 203
§ 6. Интегрирование некоторых тригонометрических функций . . 204
Задачи 208
§ 7. Интегрирование выражений, содержащих радикалы .... 209
Задачи 218
§ 8. Задачи на различные методы интегрирования 219
Ответы 223
Глава II. Определенный интеграл Римана 236
§ 1. Вычисление определенного интеграла. Понятие несобственного интеграла 236
§ 2. Площадь плоской области 246
§ 3. Объем тела вращения . 254
§ 4. Длина дуги кривой 265
§ 5. Площадь поверхности вращения 270
Задачи . . . 276
Ответы 283
Глава III. Дифференциальное исчисление функций многих переменных  286
§ 1. Предел и непрерывность 286
§ 2. Производная, первый дифференциал, частные производные . . 291
§ 3. Дифференцирование сложных функций 300
§ 4. Производные высших порядков. Второй дифференциал . . . 303
§ 5. Дифференцирование неявных функций 310
§ 6. Замена переменных . 320
§ 7. Геометрические приложения 329
§ 8. Экстремумы функций многих переменных 336
Задачи . 351
Ответы 369
Глава IV. Теоретические задачи 381
§ I. Первообразная и определенный интеграл Римана .... 381
Ответы и указания . 391
§ 2. Функции многих переменных 401
Ответы и указания . 408

 

 

 

Математический анализ в задачах и упражнениях. 1991. — 352 с.

Предисловие 4
Глава I. Интегральное исчисление функций многих переменных . 5
§ 1. Определение и общие свойства интеграла от функции f : Rn~-R
§ 2. Двойной интеграл. Его геометрические и механические приложения 20
1. Теорема Фубини 20
2. Замена переменных в двойном интеграле. Переход к полярной и обобщенной полярной системам координат 43
3. Площадь поверхности и ее вычисление 58
4. Площадь плоской фигуры и объем пространственного тела . 67
5. Механические приложения двойного интеграла 71
§ 3. Тройной интеграл. Его геометрические и механические приложения 75
1. Общие свойства. Теорема Фубини 75
2. Замена переменных. Переход к цилиндрическим, сферическим и обобщенным сферическим координатам 90
3. Объем тела 103
4. Механические приложения тройного интеграла 108
§ 4. Несобственный кратный интеграл 113
Задачи 127
Ответы 157
Глава II. Криволинейный и поверхностный интегралы первого рода . . 184
§ 1. Криволинейный интеграл первого рода 184
§ 2. Поверхностный интеграл первого рода 198
Задачи 205
Ответы 216
Глава III. Криволинейный и поверхностный интегралы второго рода. Векторный анализ 220
§ 1. Ориентация кусочно-гладкой кривой LcR3 и кусочно-гладкой поверхности SczRi 220
§ 2. Дифференциальные формы в курсе анализа. Интегрирование дифференциальных форм. Общие сведения 229
§ 3. Криволинейный интеграл второго рода 247
§ 4. Поверхностный интеграл второго рода 255
§ 5. Векторный анализ 263
§ 2*. Криволинейный интеграл второго рода 278
§ 3*. Поверхностный интеграл второго рода 289
§ 4*. Векторный анализ 301
Задачи 319
Ответы 337
Теоретические задачи 340

 


О том, как читать книги в форматах pdf, djvu - см. раздел "Программы; архиваторы; форматы pdf, djvu и др."


 

 

.

 

 

Общеобразовательные

Астрономия

Биология

География

Естествознание

Иностр. языки.

Информатика

Искусствоведение

История

Культурология

Литература

Математика:

1. Начальная школа
2. Средняя школа - математика

3. Средняя школа - геометрия

4. Решение задач
5. ОГЭ - математика
6. ЕГЭ - математика
7. ГДЗ по математике
8. Высшая школа

Менеджмент

ОБЖ

Обществознание

Психология

Религиоведение

Русский язык

Физика

Философия 

Химия

Экология

Экономика

Юриспруденция

Школа - и др.

Студентам - и др.

Экзамены школа

Абитуриентам

Библиотеки 

Справочники

Рефераты

Прочее

Помоги нашему сайту alleng!
Задонатить можно здесь:





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Copyright  © 2006-2024    alleng.me, alleng.ru, alleng.org,  Russia,   info@alleng.me 

         

Контакты