Educational resources of the Internet - Mathematics.

 Образовательные ресурсы Интернета - Математика.

        Главная страница (Содержание)

 

Гостевая


Правообладателям

Математический анализ. Интегральное исчисление. Виленкин Н.Я., Куницкая Е.С., Мордкович А.Г.

М.: Просвещение, 1979. — 177 с. 

Учебное пособие для студентов-заочников II курса физико-математических факультетов педагогических институтов.

Учебное пособие для студентов-заочников физико-математических факультетов пединститутов по разделам «Интегральное исчисление» программы курса «Математический анализ». В основу книги легли лекции, неоднократно читавшиеся авторами студентам МГЗПИ.

 

 

Формат: djvu / zip

Размер:  2,3 Мб

Скачать / Download файл     Скачать

 

 

 

 


Математический анализ. Введение в анализ.  Виленкин Н.Я., Мордкович А.Г. (1983, 191с.) 

Математический анализ. Дифференциальное исчисление. Виленкин Н.Я., Куницкая Е.С., Мордкович А.Г. (1978, 161с.)

Математический анализ. Интегральное исчисление. Виленкин Н.Я., Куницкая Е.С., Мордкович А.Г. (1979, 177с.)

Ряды.  Виленкин Н.Я., Цукерман В.В., Доброхотова М.А., Сафонов А.Н. (1982, 161с.)

Дифференциальные уравнения.  Виленкин Н.Я., Доброхотова М.А., Сафонов А.Н. (1984, 176с.)



ОГЛАВЛЕНИЕ
Предисловие 3
Глава I. Неопределенный и определенный интегралы 5
§ 1. Основные понятия —
1. Задача восстановления функции по ее производной —
2. Первообразная функция —
3. Определения неопределенного и определенного интегралов . . 6
4. Таблица основных интегралов 10
5. Свойства неопределенного интеграла 12
6. Свойства определенного интеграла 13
Вопросы для самопроверки 16
Упражнения —
§ 2. Интегрирование по частям 17
1. Интегрирование по частям в неопределенном интеграле .... —
2. Интегрирование по частям в определенном интеграле 20
3. Рекуррентные формулы —
Вопросы для самопроверки 22
Упражнения 23
§ 3. Интегрирование методом замены переменной 24
1. Замена переменной в неопределенном интеграле —
2. Замена переменной в определенном интеграле 26
Вопросы для самопроверки 28
Упражнения —
§ 4. Метод неопределенных коэффициентов 30
Вопросы для самопроверки 32
Упражнения —
§ 5. Интегрирование рациональных функций —
1. Интегрирование простейших рациональных функций —
2. Интегрирование правильных дробей 35
3. Интегрирование неправильных дробей 38
Вопросы для самопроверки 39
Упражнения 40
§ 6. Интегрирование иррациональных функций —
Упражнения 43
§ 7. Интегрирование тригонометрических функций 44
Вопросы для самопроверки - 47
Упражнения 48
§ 8. Вычисление интегралов с помощью таблиц 49
Гава II. Определенный интеграл и его свойства 52
§ 1. Определенный интеграл как число, разделяющее два числовых множества 53
1. Оценки определенных интегралов —
2. Определенный интеграл как разделяющее число 55
3. Свойства нижних и верхних сумм Дарбу 57
4. Необходимое и достаточное условие интегрируемости функции 59
5. Интегрируемость монотонных функций 60
6. Интегрируемость непрерывных функций 61
Вопросы для самопроверки 63
Упражнения —
§ 2. Существование первообразной для непрерывной функции .... 64
1. Разбиение промежутка интегрирования —
2. Среднее значение функции 65
3. Дифференцирование определенного интеграла по верхнему пределу 66
4. Формула Ньютона — Лейбница 68
Вопросы для самопроверки 69
Упражнения —
§ 3. Свойства определенных интегралов 70
1. Свойства определенных интегралов от непрерывных функций —
2. Интегрирование четных, нечетных и периодических функций 71
3. Интегрирование неравенств 73
Вопросы для самопроверки 75
Упражнения —
§ 4. Несобственные интегралы 76
1. Интегралы с бесконечным промежутком интегрирования ... —
2. Признаки сходимости несобственных интегралов 1-го рода . . 80
3. Несобственные интегралы 2-го рода 81
Вопросы для самопроверки 84
Упражнения —
§ 5. Интегральное определение логарифмической функции 85
Глава III. Приложения определенного интеграла 89
§ 1. Вычисление площадей плоских фигур —
1. Внешние, внутренние и граничные точки плоских множеств —
2. Квадрируемые области 90
3. Свойства площадей квадрируемых фигур 93
4. Вычисление площади плоской фигуры в декартовых координатах 96
5. Площадь фигуры, ограниченной кривой, заданной параметрическими уравнениями 69
6. Площадь в полярных координатах 100
Вопросы для самопроверки 102
Упражнения —
§ 2. Вычисление объемов тел 104
1. Кубируемые тела —
2. Объем прямого цилиндрического тела 106
3. Вычисление объема тела по площадям параллельных сечений 107
4. Принцип Кавальери 109
5. Объем тела вращения ПО
Вопросы для самопроверки 113
Упражнения .. 114
§ 3. Вычисление длин дуг 115
1. Понятие спрямляемой кривой —
2. Достаточное условие спрямляемости кривой 116
3. Вывод формулы длины дуги регулярной кривой 118
4. Частные случаи формулы длины кривой 120
5. Необходимое и достаточное условие спрямляемости кривой . . 122
Вопросы для самопроверки 124
Упражнения 125
§ 4. Кривизна плоской кривой 126
Вопросы для самопроверки 129
Упражнения —
§ 5. Площадь поверхности вращения —
Вопросы для самопроверки 133
Упражнения 134
§ 6. Приложения интегрального исчисления к решению физических задач 135
1. Вычисление статических моментов и координат центра тяжести материальной кривой 134
2. Вычисление статических моментов и координат центров тяжести плоских фигур 138
3. Теоремы Гульдина — Паппа 141
4. Вычисление моментов инерции 143
5. Другие приложения интегрального исчисления к физике ... 145
Вопросы для самопроверки 147
Упражнения 148
Приложение 1 (таблица неопределенных интегралов) .... 149
Приложение 2 (примерные варианты контрольной работы) ... 164
Ответы 168

 


О том, как читать книги в форматах pdf, djvu - см. раздел "Программы; архиваторы; форматы pdf, djvu и др."


 

 

.

 

 

Общеобразовательные

Астрономия

Биология

География

Естествознание

Иностр. языки.

Информатика

Искусствоведение

История

Культурология

Литература

Математика:

Начальная школа

Средняя школа

Решение задач

ГИА (экзамен)

ЕГЭ (экзамен)

ГДЗ по математике

Высшая школа

Менеджмент

ОБЖ

Обществознание

Психология

Религиоведение

Русский язык

Физика

Философия 

Химия

Экология

Экономика

Юриспруденция

Школа - и др.

Студентам - и др.

Экзамены школа

Абитуриентам

Библиотеки 

Справочники

Рефераты

Прочее

Помоги нашему сайту alleng!
Задонатить можно здесь:





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Copyright  © 2006-2025    alleng.me, alleng.ru, alleng.org,  Russia,   info@alleng.me 

         

Контакты